Deep Spiking Networks

نویسندگان

  • Peter O'Connor
  • Max Welling
چکیده

We introduce an algorithm to do backpropagation on a spiking network. Our network is "spiking" in the sense that our neurons accumulate their activation into a potential over time, and only send out a signal (a “spike”) when this potential crosses a threshold and the neuron is reset. Neurons only update their states when receiving signals from other neurons. Total computation of the network thus scales with the number of spikes caused by an input rather than network size. We show that the spiking Multi-Layer Perceptron behaves identically, during both prediction and training, to a conventional deep network of rectified-linear units, in the limiting case where we run the spiking network for a long time. We apply this architecture to a conventional classification problem (MNIST) and achieve performance very close to that of a conventional Multi-Layer Perceptron with the same architecture. Our network is a natural architecture for learning based on streaming event-based data, and is a stepping stone towards using spiking neural networks to learn efficiently on streaming data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiking Deep Networks with LIF Neurons

We train spiking deep networks using leaky integrate-and-fire (LIF) neurons, and achieve state-of-the-art results for spiking networks on the CIFAR-10 and MNIST datasets. This demonstrates that biologically-plausible spiking LIF neurons can be integrated into deep networks can perform as well as other spiking models (e.g. integrate-and-fire). We achieved this result by softening the LIF respons...

متن کامل

Training Spiking Deep Networks for Neuromorphic Hardware

We describe a method to train spiking deep networks that can be run using leaky integrate-and-fire (LIF) neurons, achieving state-of-the-art results for spiking LIF networks on five datasets, including the large ImageNet ILSVRC-2012 benchmark. Our method for transforming deep artificial neural networks into spiking networks is scalable and works with a wide range of neural nonlinearities. We ac...

متن کامل

Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms

Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and constru...

متن کامل

Training Deep Spiking Neural Networks Using Backpropagation

Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signa...

متن کامل

Theory and Tools for the Conversion of Analog to Spiking Convolutional Neural Networks

Deep convolutional neural networks (CNNs) have shown great potential for numerous real-world machine learning applications, but performing inference in large CNNs in real-time remains a challenge. We have previously demonstrated that traditional CNNs can be converted into deep spiking neural networks (SNNs), which exhibit similar accuracy while reducing both latency and computational load as a ...

متن کامل

Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification

Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.08323  شماره 

صفحات  -

تاریخ انتشار 2016